Linear temporal and spatio-temporal stability analysis of a binary liquid film flowing down an inclined uniformly heated plate
نویسندگان
چکیده
Temporal and spatio-temporal instabilities of binary liquid films flowing down an inclined uniformly heated plate with Soret effect are investigated by using the Chebyshev collocation method to solve the full system of linear stability equations. Seven dimensionless parameters, i.e. the Kapitza, Galileo, Prandtl, Lewis, Soret, Marangoni, and Biot numbers (Ka, G, Pr, L, χ , M , B), as well as the inclination angle (β) are used to control the flow system. In the case of pure spanwise perturbations, thermocapillary Sand P-modes are obtained. It is found that the most dangerous modes are stationary for positive Soret numbers (χ 0), and oscillatory for χ < 0. Moreover, the P-mode which is short-wave unstable for χ =0 remains so for χ < 0, but becomes long-wave unstable for χ > 0 and even merges with the long-wave Smode. In the case of streamwise perturbations, a long-wave surface mode (H-mode) is also obtained. From the neutral curves, it is found that larger Soret numbers make the film flow more unstable as do larger Marangoni numbers. The increase of these parameters leads to the merging of the long-wave Hand S-modes, making the situation long-wave unstable for any Galileo number. It also strongly influences the short-wave P-mode which becomes the most critical for large enough Galileo numbers. Furthermore, from the boundary curves between absolute and convective instabilities (AI/CI) calculated for both the long-wave instability (Sand H-modes) and the short-wave instability (P-mode), it is shown that for small Galileo numbers the AI/CI boundary curves are determined by the long-wave instability, while for large Galileo numbers they are determined by the short-wave instability.
منابع مشابه
Instabilities of Thin Viscous Liquid Film Flowing down a Uniformly Heated Inclined Plane
Instabilities of a thin viscous film flowing down a uniformly heated plane are investigated in this study. The heating generates a surface tension gradient that induces thermocapillary stresses on the free surface. Thus, the film is not only influenced by gravity and mean surface tension but also the thermocapillary force is acting on the free surface. Moreover, the heat transfer at the free su...
متن کاملIrreversibility Analysis of MHD Buoyancy-Driven Variable Viscosity Liquid Film along an Inclined Heated Plate Convective Cooling
Analysis of intrinsic irreversibility and heat transfer in a buoyancy-driven changeable viscosity liquid along an incline heated wall with convective cooling taking into consideration the heated isothermal and isoflux wall is investigated. By Newton’s law of cooling, we assumed the free surface exchange heat with environment and fluid viscosity is exponentially dependent on temperature. Appropr...
متن کاملThermodynamic Analysis of Gravity-driven Liquid Film along an Inclined Heated Plate with Hydromagnetic and Viscous Dissipation Effects
The purpose of this work is to investigate the entropy generation in a laminar, gravity-driven conducting liquid film with fully developed velocity flowing along an incline heated plate in the presence of a transverse magnetic field. The upper surface of the liquid film is considered free and adiabatic. The effect of heat generation by viscous dissipation is included in the analysis. The influe...
متن کاملSecond Law Analysis of a non-Newtonian Laminar Falling Liquid Film Along an Inclined Heated Plate
The second law analysis of heat transfer of a non-Newtonian, laminar falling liquid film along an inclined heated plate is investigated. The upper surface of the liquid film is considered free and adiabatic. Velocity and temperature profiles are obtained analytically and used to compute the entropy generation number (Ns), irreversibility ratio (Ф) and the Bejan number (Be) for several values of...
متن کاملSecond-law Analysis of Laminar Non- Newtonian Gravity-driven Liquid Film along an Inclined Heated Plate with Viscous Dissipation Effect
A second-law analysis of a gravity-driven film of non-Newtonian fluid along an inclined heated plate is investigated. The flow is assumed to be steady, laminar and fully-developed. The upper surface of the liquid film is considered to be free and adiabatic. The effect of heat generation by viscous dissipation is included. Velocity, temperature and entropy generation profiles are presented. The ...
متن کامل